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Abstract. Some mathematical models used in cancer research are con-
sidered. Some mathematical mistakes made in those models are analyzed.
Also a new version of the well-known multistage model of carcinogenesis is
presented.

1. Introduction. It often happens that serious mathematicians look
down on some applied problems believing that mathematics used there is prim-
itive and is not worth their attention. On the other hand, specialists in that
non-mathematical domain consider mathematical models as a decoration for their
theories and do not care much about mathematical rigor and correctness. This
phenomenon is a sort of Mechanitis — “the occupational disease of one who. . .
believes that a mathematical problem, which he can neither solve nor even for-
mulate, can readily be answered, once he has access to a sufficiently expensive
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machine” [20], with the only difference being that instead of machines a couple
of formulas are believed to be enough.

This situation provides a rich pasture for a mathematician who is curi-
ous enough to stick his head into a new domain, and stubborn enough to learn
strange terms and ideas which are used there. First, one can have fun observing
remarkable mistakes in such quantities that one could never meet in mathematical
environment. Let us look at some examples:

a. “. . . a constant “extrinsic mortality” rate of 0.1 per year implies that
overall lifespan cannot be extended beyond 1/0.1= 10 years . . . ” [33];

b. “. . . the probability of a particular cell mutating is x . . . the probability
of having a colony of n mutated cells somewhere in a tissue containing N cells is
Nxn” [15]. The authors without batting an eye get this probability equal to 3.2;

c. The parameters chosen for Weibull distribution imply

∫

p(t) = 20223

where p(t) is the probability density function [27];

d. “Even when stem-cell mutations occur at random, the initiation . . . of
a cancer cannot be viewed as a random process” [12].

Second, developing a more or less reasonable model in a new domain is
a challenge, which requires not only mathematical knowledge but also a large
volume of common sense and some impudence to start playing on a foreign turf.

It seems that the very same thing happens now in cancer mathematics.
Inventing various models of cancer initiation and progression is very fashionable
today. But for some reason many respected cancer specialists develop mathe-
matical models without professional mathematical assistance. On the basis of
their amateurish creations they sometimes make serious conclusions, which are
supposed to give answers to fundamental problems of the nature of cancer and
thus determine general directions of further research.

2. The three problems. We can name at least three fundamental
problems in cancer research, such that attempts to solve each one of them led
to creating cancer mathematical models (CMM). Historically, the first of those
models was developed in order to explain regularities discovered in incidence
data [4]. In the 1950s Armitage and Doll [1] noticed that the logarithm of the
death rate increased proportionally to the logarithm of age, but about six times as
rapidly; in other words, the death rate increased proportionally to the sixth power
of age. They concluded that a cancer cell was the end-result of seven successive
mutations. This multistage theory (MT) of carcinogenesis has undergone several
changes afterwards and gave rise to a variety of different theories owing to new
data and new ideas emerging. The lifespan has grew up, statistics improved, and
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the data for age groups above 75 years became available. It turned out that the
incidence rate that replaced the death rate in MT did not fit that log-log curve
[27] as its increase was slowing down in old ages.

Some researchers attempted to explain those incidence curves as accu-
mulation of only three mutations [14]. Other propositions include extreme value
theories [17],[27], population genetics model [24] and many other evolutionary
models [5], and even such exotic ones as kinetic+game models [6] or Landau
model of the second order phase transition [28]. The problem is still being de-
bated.

The second problem for which CMM are widely used is to understand
the role of intrinsic vs extrinsic factors in cancer initiation. The sensational Bad
Luck Theory report [29] by two prominent scientists became the major event
in this field two years ago. The authors argue that intrinsic stochastic effects
play the main role in tumor initiation, hence primary prevention (vaccination,
altering lifestyle, environmental control) is unlikely to prevent a large subset of
cancers, especially hereditary ones. On the contrary, secondary prevention (early
detection and treatment), in their view, has to be the major focus. This result
was severely criticized from biological point of view by many cancer specialists
(for bibliography see [32]) but the disputants waste their time: the underlying
mathematical model is incorrect [7]. Its main idea is that as coefficient of corre-
lation R between two variables, namely number of stem cell divisions and cancer
incidence, is equal to 0.804, hence R2 ≈ 2/3 of actual cancer incidence can be
explained by stem cells random divisions, i.e. by bad luck.

Actually, the authors calculate correlation between logarithms of two vari-
ables and interpret it as correlation between the variables themselves. This is a
gross mathematical mistake as correlation between non-linear functions is not
equal to correlation between the arguments. The real coefficient of correlation
between stem cells divisions number and cancer incidence is 0.97, so according to
the Bad Luck logic the percentage of unpreventable cancers should be more than
0.9. But it is well known that correlation does not imply causation, hence it does
not explain anything and the conclusion is unfounded. The mathematical level
of [29] can be illustrated also by “extra risk score”, which the authors develop as
an index of “how high risk is relative to division number”, but calculate it not
as ratio but as a product of these two values. The authors have clarified this as
“It may seem intuitive to multiply rather than add logarithms” [31]. And using
machine learning to split a single set of thirty values of this index into two sub-
sets of negative and positive numbers, which can be successfully accomplished by
means of ones eyes, is obviously the example of decoration that we have discussed
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above.

Meanwhile the recent research [19] suggests that each of risk factors such
as alcohol, smoking, Body Mass Index, lack of physical activities, diet, etc in-
creases colorectal cancer risk by 35%, which means that at least this particular
cancer is preventable for many people. This result does not contradict the high
correlation calculated in [29] but is obviously incompatible with the famous Bad
Luck conclusion.

The third problem is about the hypothesis of frailty which means that
“a fraction of population is either exclusively at risk, or at vastly increased risk
compared with the general population” [22]. Indeed, why do not the majority of
people get cancer? Is it true that everybody gets cancer if he lives long enough,
or some people are immune to it? An elegant idea was proposed in [27]. The
authors suggest that age-specific incidence follows the extreme value (Weibull)
distribution if cancer is diagnosed as soon as the first of many potential tumor
cells develops into a tumor. Choosing the distribution parameters so that the
cumulative distribution function fits the incidence curve they get that only 13.5%
of population is susceptible to colon and only 22% — to prostate carcinomas.
Unfortunately the authors use wrong formulas for Weibull distribution as well as
for statistical criteria [8] and thus this conclusion is unfounded too.

Nevertheless, the main problem of that research is not the incorrect equal-
ities but the hidden assumptions which, as it usually happens, are neither dis-
cussed nor even mentioned. In fact, to use Weibull distribution here one has to
assume a) that all potential tumor cells in the population behave equally, i.e.
that cancer start times in all bodies (and in all cells in any specific body) have
the same distribution, and b) that for different cells in any body those times are
independent. Both are questionable. Although the role of immunity in cancer
development is not fully understood there is a lot of evidence suggesting that
immune system does prevent cancer [9],[10]. So cancer incidence in a particular
person depends on the state of his/her immune system. Obviously these states
are different in different people because of different heredity or/and of different
lifestyles, environmental and occupational exposures, current and past infections,
etc. Thus the first assumption is not valid. As for the second one, there is some
evidence that stem cells interact with each other by means of transforming the
environment (characterized by extracellular matrix [16]) around themselves. If
so, this interaction may be positive (the mutated cell transforms the environment
in the way that facilitate mutations in the nearby cell) as well as negative (the
mutated cell impedes the others mutation). The idea of dependence is based on
the general fact that there is no real random process whose values are all inde-
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pendent of each other. Time of developing cancer in a cell is a random process,
thus start times for some cells in a tissue should be dependent.

All three problems are not only of academic interest but also of great
practical importance. Knowing what factors influence cancer initiation the most
(the second problem) as well as understanding whether all the population or only
some part of it is susceptible to cancer (the third problem) would help to optimize
cancer research funding, screening schemes, and cancer prevention, while solving
the first problem would help with the other two. The cancer research community
uses mathematical methods widely but unfortunately does not have a habit of
rejecting the incorrect solutions, which is a necessary part of applying mathe-
matics in any domain. The general public has a great interest to the progress in
this field, and because of that some weakly founded or unfounded results become
sensations shared widely by mass media, which in their turn influence the deci-
sion makers. So examining mathematical correctness of existing CMMs in order
to avoid further mistakes is of key importance.

3. Multistage model and its correction. The MT model, which
was discussed in the previous Section, “has been a pillar of the mathematical
and statistical study for decades” [18]. Its main assumption is that cancer in a
tissue starts when at least one of its cell lineages achieves malignant state after
having undergone M sequential transformations (driver mutations). Time inter-
vals between successive mutations are assumed to be independent random values
following exponential distributions with densities λi exp(−λix), i = 1, . . . ,M .
λ-s are usually called transition rates [23]. The cumulative probability p(T ) of
getting cancer during the first T years of life is [2]

(1) p(T ) = p{ξM < T} = 1−
M
∏

j=1

λj ×
M
∑

i=1

1

λiC
(M)
i

e−λiT

where ξM = t1 + t2 + · · ·+ tM , C
(M)
i =

M
∏

j=1,j 6=i

(

λj − λi

)

.

Cancer statistics though is not about cumulative probability but about
cancer incidence rate, which is“the number of new cancers of a specific site/type
occurring in a specified population during a year, usually expressed as the number
of cancers per 100,000 population at risk

Incidence rate = (New cancers/Population)× 100, 000”.

This is the definition from the Surveillance, Epidemiologe, and End Re-
sults Program, a US population-based registry that records all cancers regardless
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of clinical treatment [36] and covers approximately 28% of the US population.
The National Cancer Institute [34] treats cancer incidence as the normalized
number of new cases of cancer too. Thus incidence rate is the 100000-fold sample
estimate of conditional probability for a person to get cancer at age T given that
he didn’t get it before.

Not having enough data about incidence rate in those times, Armitage
and Doll were studying mortality rate, which had the similar sense: it is “a
measure of the number of deaths (in general, or due to a specific cause) in a
particular population, scaled to the size of that population, per unit of time”
[37], thus it is also the sample estimate of conditional probability for a person
to die at age T , multiplied by some constant (1000 according to [37]). Indeed,
the already dead people are removed from the future statistics, which means that
incidence rate takes into account only those who are still alive.

The conditional probability for one cell lineage to get M mutations during
T years given that less than M mutations happened to it during the first (T-1)
years is

(2) pc(T ) = P{mT ≥ M |mT−1 < M} =
P{mT ≥ M,mT−1 < M}

P{mT−1 < M}
,

where mT is the number of mutations the cell underwent during first T years of
life.

Equality (2) is equivalent to

(3) pc(T ) =
P{T − 1 ≤ ξM ≤ T}

P{ξM > T − 1}
=

P{ξM ≤ T} − P{ξM ≤ T − 1}

P{ξM > T − 1}
.

After a simple transformation we get

(4) pc(T ) = 1−
1− p(T )

1− p(T − 1)
,

where p(T ), p(T−1) are calculated as in (1). Similarly, the conditional probability
for a tissue to get cancer at age T is

(5) p(tiss)c (T ) = 1−
1− P{τ ≤ T}

1− P{τ ≤ T − 1}
,

where τ is the time of cancer start in the tissue and P{τ ≤ T} is the cumulative
probability for the tissue to get cancer during the first T years of life. Assuming
independence of mutation processes in different cells we get

(6) P{τ ≤ T} = 1−
(

1− p(T )
)Ncells

,
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where Ncells is the number of cells in a tissue. Finally,

(7) p(tiss)c (T ) = 1−
( 1− p(T )

1− p(T − 1)

)Ncells

.

Figure 1 shows the age-incidence rate curve (the SEER data for colon and rectum
cancers) and its approximation (6) for M = 6. One can see that the exponen-
tial curve diverges from the incidence one after 75 years because of slowing of
incidence increase that we discussed in Section 2.

Fig. 1. Approximation of incidence rate by conditional probability (7)

Armitage and Doll noticed that the mortality rate of many cancers in-
creased as sixth (fourth to sixth in [3]) power of age. Using that

(8) p(T ) ≈
λ1 · · ·λM

M !
TM

([21], quoted in [2]) they concluded that M may be equal to seven (around five
to seven in [3]). This was the beginning of MT model. Nowadays some groups
of researchers are dissatisfied with this model. Soto and Sonneschein claim that
multistage theory “should be dropped and replaced” [26]. They propose instead
their Tissue Organization Field Theory (TOFT) the main idea of which can be
translated to the mathematical language as “all processes in the human body are
interdependent and carcinogenesis is not an exception”. Rozhok and De Gregory
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[25] make a step in this direction linking transition rates with fitness, which is a
decreasing function of age. The latter idea, while explaining the old age incidence
decline, seems to be inconsistent with common sense: it implies that the younger
and the healthier is the organism the more likely it is to get the disease. It seems
more logical to treat the transition rates as functions of immunity state, which
increases in the childhood and decreases in the old age, see Fig. 2.

Fig. 2. Immunity and S curves used in nhP model

Indeed, there is a lot of evidence that immune system can recognize and
destroy malignantly transformed cells [9, 11]. It is well known also that people
with high-level immunity not only recover faster when they get common diseases,
e.g. the cold, but also fall ill less often as compared to those with low immunity.
With respect to cancer the lesser susceptibility means that either the number M of
necessary mutations is less in people with low immunity or the transition rates are
higher. We assume that transition rates are inversely proportional to immunity;
rates for all M mutations at that are supposed to be equal for simplicity. In
this case carcinogenesis becomes a non-homogeneous Poisson process with the
transition rate λ(t).

The second assumption that we make in our model is that life processes
slow in the old age. Thus we multiply the transition rate λ(t) by function S(t)
declining with age see Fig. 2. Now the cumulative probability for a cell lineage
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to reach a malignant state during first T years of life is [35]

(9) pnhP (T ) =

[

λnhP (T )
]M

e−λnhP (T )

M !
,

where

λnhP (T ) =

∫ T

0
λ∗(t)dt,

λ∗(t) = λ(t)× S(t). Finally, for tissue with Ncells cells we get

(10) p
(tiss)
nhP (T ) = 1−

( 1− pnhP (T )

1− pnhP (T − 1)

)Ncells

.

Figure 3 shows that this model explains the incidence rate old age slowing.

Fig. 3. Approximation of incidence rate by nhP probability (10)

4. Conclusions.

1. Mathematical community should pay closer attention to the attempts
to use mathematics in cancer research.

2. A professional mathematician’s assistance would help cancer specialists
to avoid many mistakes and save them time and effort.
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3. Decreasing of immunity together with slowing up of life processes with
age can explain the cancer incidence curves old age behaviour.

The non-homogeneous model described in Section 3 is a first simple step
towards the statistical estimation of how extrinsic factors affect the cancer inci-
dence rate. Our next goal is to take into account the correlation between mutation
processes in different cells.
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