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Abstract. In the present article τ -bounded spaces are investigated. It
is shown that for every infinite cardinal τ there exists a meager Hausdorff
τ -bounded space.

1. Introduction. All spaces are assumed to be Hausdorff spaces. We
shall use the terminology from [4, 10, 11] which contain a survey of results. Denote
by |X| the cardinality of a space X, by wX the weight of X, by βX the Stone-
Čech compactification of a Tychonoff space X. A space is called a Baire space, if
the intersection of every countable family of open dense subsets is a dense subset.
A space is called a meager space or a first category space, if it is a union of a
countable family of nowhere dense subsets.

Our main interest is the following question posed by W. Roelcke: Is there
a Hausdorff ω-bounded space which is not Baire?
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In 1972, Z. Frolik [6] constructed an example of a meager countably com-
pact space. Then in 1996, J. R. Porter [8] constructed an example of a countably
compact, separable and meager space. We show that for every infinite cardinal τ ,
there exists a τ -bounded meager space. However, the following problems remain
unsolved:

Question 1.1. Is there a countably compact or an ω-bounded k-space
which is not Baire?

Question 1.2 (W. Roelcke). Is there a sequentially compact space which
is not Baire? Is there a sequentially compact ω-bounded space which is not Baire?

A subset Z of a topological space X is called bounded in X if for any
locally finite family γ of open subsets of X the set {U ∈ γ : Z ∩ U 6= ∅} is finite.
A space X is called feebly compact if the set X is bounded in in the space X.

Any countably compact space is feebly compact. A completely regular
space is feebly compact if and only if it is pseudocompact.

Theorem 1.3. Let Z be a bounded Gδ-subset of a regular space X. Then:
1. The subspace Z is a Baire space.
2. If Z ⊂ Y ⊂ clX Z, then Y is a Baire space.

P r o o f. Obviously, the assertion 2 follows from the assertion 1. Assertion
1 follows from Theorem 5.1. ✷

2. τ -bounded sets. Fix an infinite cardinal τ .

Definition 2.1. A subset Z of a topological space X is called:
(a) τ -bounded in X, if the closure clX L in X of every subset L ⊆ Z of

cardinality |L| ≤ τ is compact;
(b) weakly τ -bounded in X, if for every subset A of Z there exists a subset

L of A such that |L| ≥ min{τ, |A|} and clX L is compact;
(c) στ -compact, if Z is a union of τ compact subsets of X;
(d) countably compact in X if any infinity countable subset of Z has an

accumulation point in X.

Definition 2.2 (see [10, 11]). A space X is called:
(a) τ -bounded, if X is τ -bounded in X;
(b) totally τ -compact, if X is weakly τ -bounded in X;
(c) initially τ -compact, if every open cover of X of cardinality ≤ τ con-

tains a finite subcover.

For τ = ω, i.e. for countable τ , we say that X is ω-bounded, or totally
countably compact, or countably compact, respectively.
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Definition 2.3 (see [1]). For any subset A of a space X the set τ -clX A =⋃
{clB : B ⊆ A, |B| ≤ τ} is called the τ -closure of A in X. The set A is called

τ -closed, if A = τ -clA.

The τ -closure of a set is τ -closed (see [1]).

Theorem 2.4. Let Z be a subset of a space X. The following assertions
are equivalent:

1. The subset Z is τ -bounded in X.

2. τ -clX Z is τ -bounded space.

P r o o f. The implication 2 → 1 is obvious. Suppose that Z is τ -bounded
in X and Y = τ -clX Z. Let L ⊆ Y and |L| ≤ τ . For every point y ∈ L,
there exists a subset Z(y) of Z such that y ∈ clX Z(y) and |Z(y)| ≤ τ . Put
Z(L) = ∪{Z(y) : y ∈ L}. By construction, L ⊆ clX Z(L) ⊆ Y , |Z(L)| ≤ τ and
clX Z(L) is compact. Hence clY L = clX L is compact. ✷

Corollary 2.5. A space X contains a subset which is dense τ -bounded
in X, if and only if X contains a dense τ -bounded subspace.

Corollary 2.6. Let L ⊆ H ⊆ τ -clX L ⊆ X. The set L is τ -bounded in
X, if and only if H is τ -bounded in X.

Corollary 2.7. Every τ -closed subset of a τ -bounded space is a τ -bounded
space.

Example 2.8 (see [4, Exercise 3.6.I]). Fix a maximal uncountable family
{Nα : α ∈ A} of almost disjoint infinite subsets of the set ω = {0, 1, 2, . . . }. Let
A ∩ ω = ∅ and X = A ∪ ω. Points in ω are declared to be isolated. For each
a ∈ A and every finite subset F of ω a set V (a, F ) = {a} ∪ (Na \ F ) is a basic
neighborhood of a in X. Then:

1. The set ω is weakly ω-bounded in X.

2. X does not contain a dense countably compact subspace.

3. The examples of Frolik and Porter. Because in our construc-
tions we use some ideas from the Frolik’s and Porter’s construction, we present
succinctly these examples.

Construction 3.1. Let {Xi : i ∈ ω} be a sequence of pairwise disjoint
subspaces of a space X.Consider the subspaces Y0 = X,. . . , Yn+1 = ∪{Xi : i ≥ n},
. . . . Denote by Y = X(X0,X1,... ) the set X with the topology defined as follows:
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U is open in Y , if and only if U = ∪{Ui : i ∈ ω}, where Ui is an open set in the
subspace Yi of the space X. The system {Yi : i ∈ ω} ∪ {U ⊆ X : U is open in X}
is a subbase of the space Y . It is easy to check that:

a◦. The topologies of X and Y coincide on each Xi and on X \ Y1.

b◦. The set Yi is dense in Y , if and only if it is dense in X.

c◦. If X is a Hausdorff space, then Y is a Hausdorff space too.

d◦. A point x ∈ Xn is an accumulation (complete accumulation) point of
a set L ⊆ Yn+1 in the topology of the space X, if and only if x is an accumulation
(complete accumulation) point of L in the topology of the space Y .

e◦. If X0,X1, . . . are dense subspaces of the space X, then Y is a meager
space.

If X0 = Z and Xi = ∅ for all i ≥ 1, then we write XZ = X(X0,X1,... ). In
this case, Z is an open subspace of the space XZ .

Proposition 3.2. If Z is a dense subspace of a space X, then:

1. XZ is a Baire space, if and only if Z is a Baire space.

2. XZ is a meager space, if and only if Z is a meager space.

P r o o f. Obvious. ✷

Example 3.3 (Z. Frolik [6]). Let X = ω∗ = βω \ ω, where ω is the
discrete space of natural numbers. By Theorem 2.7 in [5], there exists a disjoint
sequence {Xn : n ∈ ω} of countably compact dense subsets of X such that |Xn| ≤
exp(ω) = 2ω for all n. Put Y = X(X0,X1,... ). Since Xn are dense subsets of the
space ω∗, Y is a meager space. As the cardinality of each infinite closed subset
of X is exp(exp(ω)), each infinite subset of Y has an accumulation point in

K = Y \ (
⋃

{Xn : n ∈ ω}). Hence Y is a countably compact meager space.

For every infinite subset L of X0 the set F = clY L is not a compact subset
of Y . Suppose that F is compact. Since X0 is countably compact, then there
exists an accumulation point x ∈ X0∩F of the set L. Take a neighbourhood U of
x in F for which clF U ⊆ Y1∩F (the set Y1 ∩F is open in F ), Hence F ∩ clF U is
an infinite compact subset of Y1 of cardinality ≤ exp(ω), contradiction. Therefore
Y is not totally countably compact.

Example 3.4 (J. R. Porter [8]). Since ω∗ contains every separable ex-
tremally disconnected space, ω∗ contains a countable dense-in-itself subset S (see
[7, Theorem 1.8.3], [9, Exercise 6Q2]). Consider the subspace X = clβω S of ω∗.
The space Y = XS is a countably compact meager space. Since Y is separable
and not compact, Y is not an ω-bounded space. We show that Y is totally count-
ably compact. If D is any countable subset of X, there is a countable family of
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continuous functions {fn : X → [0, 1] : n ∈ ω} which separates the points of D.
The diagonal product f = △{fn : n ∈ ω} : X → [0, 1]ω is a continuous mapping
which separates the points of D.

Let L be an infinity countable subset of Y . Since X is compact there is
a continuous mapping g : X → Z onto a metrizable compact space Z which
separates the points of L ∪ S. The set g(L) contains an infinite convergent
sequence H with a limit c ∈ Z. Put A = L ∩ g−1(H). Then A is a discrete
subspace of the spaces X and Y , the set B = clX A \ A ⊆ g−1(c) is uncountable
and |S ∩B| ≤ 1. Therefore there exist a point b ∈ B \ S and an open set U of X
such that b U and clX U ∩B ∩ S = ∅. The set E = U ∩A is infinite and discrete
in X and Y . Since clX E ⊆ clX U , we obtain that (clX E \ E) ∩ S = ∅, clX E

is a compact subset of X and the topologies of the spaces X and Y coincide on
clX E. We have constructed an infinite subset E of L for which clY E is compact.
Hence Y is totally countably compact.

The following assertion is obvious.

Proposition 3.5. If a subset Z is countably compact in a space X, then
the set Z is bounded in X.

Example 3.6. Let Q0 be the set of rational numbers of the segment
[0, 1]. Denote by T the usual Euclidean topology on [0, 1]. By X we denote the
set [0, 1] with the topology T1 generated by the open base T ∪ {U ∩Q0 : U ∈ T }.
The space X has the following properties:

– Q0 is an open dense subspace of the space X;

– the set D = [0, 1] \Q0 is closed, discrete and nowhere dense in X;

– X is not a countably compact space;

– the set Q0 is countably compact in the space X;

– X is a Hausdorff feebly compact first countable space;

– X is a meager space.

Example 3.7. Let S be a Hausdorff dense-in-itself separable countably
compact first countable space with the topology T . Fix a dense countable set Y
in S. By X we denote the set S with the topology T1 generated by the open base
T ∪ {U ∩ Y : U ∈ T }. The space X has the following properties:

– Y is an open dense subspace of the space X;

– the set D = S \ Y is closed, discrete and nowhere dense in X;

– X is not a countably compact space;

– X is a Hausdorff feebly compact first countable space;

– X is a meager space.
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4. Construction of meager τ -bounded spaces. Let τ be an infi-
nite cardinal and by τ+ denote the smallest cardinal greater than τ .

For every Tychonoff space X denote τ -βX = τ -clβX X and b(X, τ) =
{clβX L : L ⊆ X, |L| ≤ τ}. The space τ -βX is the largest τ -bounded extension of
the space X. Every continuous mapping f : X → Y into a τ -bounded space Y

admits a continuous extension on τ -βX. Now put τ -θX = (τ -βX)X in the sense
of Construction 3.1 and X∗ = τ -βX \ X. Let τ -ηX be the set τ -βX with the
topology defined as follows: the space X is an open subspace of the space τ -ηX;
a set V is a neighborhood of a point x ∈ X∗, if and only if x ∈ V , V ∩X is open
in X and V ∩ F is open in F for all F ∈ b(X, τ).

Lemma 4.1. If X is a Tychonoff space then:

1. X is an open dense subspace of the spaces τ -θX and τ -ηX.

2. If X is a meager space, then τ -θX and τ -ηX are meager spaces, too.

3. The topologies of the spaces τ -θX and τ − ηX coincide on each F ∈
b(X, τ).

4. The space τ -θX is τ -bounded, if and only if the space τ -ηX is τ -
bounded.

5. If every subset of X of cardinality ≤ τ is closed in X, then τ -θX and
τ -ηX are τ -bounded spaces and F ∈ b(X, τ) are compact subsets.

P r o o f. Obvious. ✷

Definition 4.2 (W. Roelcke). A space is called a σcc∗-space, if the closure
of each σ-compact subset is compact.

We say that a space is a στcc
∗-space, if the closure of every στ -compact

subset is compact. Every στcc
∗-space is τ -bounded.

Lemma 4.3. Let X be a normal space and every subset of X of cardinality
≤ τ be closed in X. Then:

1. X
⋃

F is open in τ -ηX for each F ∈ b(X, τ).

2. If K is a compact subset of τ -ηX then K ⊆ F for some F ∈ b(X, τ).

3. τ -ηX is a στcc
∗-space.

P r o o f. The subspaces of X of cardinality ≤ τ are closed and discrete
subspaces of X. Hence, if F,E ∈ b(X, τ) and F ⊆ E, then F is a closed and
open subset of E. This proves assertion 1. Let K be a compact subset of τ -ηX
and K◦ = K \ X. Suppose that K◦ \ F is non-empty for every F ∈ b(X, τ).
Then there exist a disjoint family {Lα : α < τ+, α is ordinal} of subsets of X of
cardinality ≤ τ and a set B = {bα ∈ K◦ : α < τ+} such that bα ∈ Fα = clLα for
all α < τ+. For that fix a point b1 ∈ K◦ and a set L1 ⊆ X of cardinality ≤ τ
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such that b1 ∈ clL1. If α > 1 and {bβ , Lβ : β < α} we have constructed, then
we put Φα = cl(∪{Lβ : β < α}), fix a point bα ∈ K◦ \ Φα and a set L ⊆ X of
cardinality ≤ τ such that bα ∈ clL. Because Φα is open Φα+1 = cl(L∪Φα), then

for Lα = L\Φα we have bα ∈ clLα. The set Uβ = X
⋃

cl(∪{Lα : α < β}) is open

for each β < τ+. Hence Kβ = K◦ r Uβ are non-empty compact subsets. Fix a
complete accumulation point x of the set B. Since |B ∩ Uβ | ≤ τ for all β < τ+,
we have x ∈ C = ∩{Kβ : β < τ+}. By construction, x ∈ F for some F ∈ b(X, τ).
If E = (F ∩X) \ ∪{Lβ : β < τ+}, then x ∈ clE. Hence x is not an accumulation
point of the set B. That is a contradiction. Therefore K◦ ⊆ clH for some subset
H of X of cardinality ≤ τ . In this case the set K \ clH is a finite set. Assertion
2 is proved. Assertion 3 follows from assertion 2. ✷

Remark 4.4. Let X be a normal space in which all countable subsets
are closed. Denote by T0 the topology on the space τ -βX, by T1 the topology on
τ -θX and by T2 the topology on τ -ηX. Then:

1. T0 ⊆ T1 ⊆ T2.

2. All non-isolated points of X are points of non-regularity of the space
τ -θX. Hence T0 = T1, if and only if X is a discrete space.

3. Every point of X∗ is a point of regularity of τ -θX. If L is an infinite
set of non-isolated points of the space X, |L| = ω and x ∈ clL, then the space
τ − ηX is not regular at the point x. Hence T1 = T2, if and only if the set of
non-isolated points of the space X is finite. The system T1∪{X∪F : F ∈ b(X, τ)}
is a subbase of the topology T2 provided that the subsets of X of cardinality ≤ τ

are closed in X.

4. If |X| = τ+, X is a normal space and all subsets of X of cardinality ≤ τ

are closed in X, then there exists a perfect continuous mapping of the subspace
X∗ of the space τ -ηX onto the space of ordinals W (τ+) = {β : β < τ+}.

A space X is called a Pτ -space, if the intersection of all τ open sets is
open. A Pω-space is called a P -space.

From Lemma 4.3 follows

Corollary 4.5. If X is a normal Pτ -space, then τ -θX is a τ -bounded
space and τ -ηX is a στcc

∗-space.

Proposition 4.6. For every infinite cardinal τ there exists a meager
hereditarily paracompact Pτ -space Sτ with the properties:

1. Sτ is a commutative topological group.

2. χ(Sτ ) = w(Sτ ) = |Sτ | = τ+.

P r o o f. Let D = {0, 1} be the discrete group with the neutral element
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0. Denote by X the set Dτ+. For every point x = (xα : α < τ+) ∈ X and all
β < τ+ we put V (x, β) = {y = (yα) ∈ X : xα = yα for all α < β}. Consider on
X the topology with the base B = {V (x, β) : x ∈ X,β < τ+}. The system B is
of the rank 1, i.e. for all U, V ∈ B we have U ∩ V = ∅, or U ⊆ V , or V ⊆ U .
Because a space with a base of rank 1 is paracompact (see [2, Corollary 1]), X is
a hereditarily paracompact topological group. By construction, X is a Pτ -space
and χ(X) = τ+. For every n ∈ ω we put Xn = {x = (xα) : |α : xα 6= 0| ≤ n} and
Sτ = ∪{Xn : n ∈ ω}. Every set Xn is nowhere dense in Sτ and |Sτ | = |Xn| =
τ+. ✷

From Lemma 4.1, Corollary 4.5 and Proposition 4.6 follows.

Corollary 4.7. Bτ = τ -θSτ is a meager τ -bounded Hausdorff space.

Corollary 4.8. Hτ = τ -ηSτ is a meager Hausdorff στcc
∗-space.

5. Wδ-sets. Let X be a space, Z be asubspace of X, γ = {γn =
{Uα : α ∈ An} : n ∈ N} be a sequence of families of open non-empty subsets
of the space X, and let π = {πn : An+1 → An : n ∈ ω} be a sequence of single-
valued mappings. A sequence α = {αn : n ∈ N} is called a spectral sequence if
αn ∈ An and πn(αn+1) = αn for every n ∈ N.

Consider the following conditions:

(SC1) Z ⊂ ∪{Uβ : β ∈ An} for each n ∈ N.

(SC2) For each spectral sequence α = {αn : n ∈ N} the set H(γ, π, α) =
∩{Uαn

: n ∈ N} is a subset of the subspace Z.

(SC3) ∪{Uβ : β ∈ π−1
n (α)} ⊂ Uα and ∪{Uβ ∩ Z : β ∈ π−1

n (α)} = Uα ∩ Z

for all α ∈ An and n ∈ N.

(SC4) For all α ∈ An and n ∈ N we have ∪{Uβ : β ∈ π−1
n (α)} ⊂ Uα and

the set ∪{Uβ ∩ Z : β ∈ π−1
n (α)} is a dense subset of the subspace Uα ∩ Z.

The sequences γ and π are called a sieve of Z in X if they are Properties
(SC1), (SC2) and (SC3).

The sequences γ and π are called a dense sieve of Z in X if they are
Properties (SC1), (SC2) and (SC4).

The sequences γ and π are called a pseudosieve in X if for all α ∈ An and
n ∈ N the set ∪{Uβ : β ∈ π−1

n (α)} is a subset of the subspace Uα.

Let γ = {γn = {Uα : α ∈ An} : n ∈ N} and π = {πn : An+1 → An : n ∈ ω}
be a pseudosieve in X. The set ∪{H(γ, π, α) : α is a spectral sequence} is called
the limit of the pseudosive (γ, π) and is noted by limX(γ, π).

If (γ, π) is a sieve of Z in X, then limX(γ, π) = Z. If (γ, π) is a dense
sieve of Z in X, then limX(γ, π) ⊂ Z.
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A set Z is called a Wδ-subset of a space X if there exists a sieve (γ, π) of
Z in X such that limX(γ, π) = Z. Any Gδ-subset is a Wδ-subset.

A space X is called sieve-complete if X is an open continuous image of
some Čech-complete space (see [3]). A regular space X is sieve-complete if and
only if X is a Wδ-subset of the Wallman compactification ωX of the space X.

Theorem 5.1. Z is a bounded Wδ-subset of a regular space X, then Z

is a Baire space.

P r o o f. Let γ = {γn = {Uα : α ∈ An} : n ∈ N} and π = {πn : An+1 →
An : n ∈ ω} be a sieve of Z in X. Suppose that Z is not a Baire space. Then
there exists a sequence {Vn : n ∈ N} of open subsets of the space X such that:

– Vn+1 ⊂ Vn and the set Vn ∩ Z is dense in Z for each n ∈ N

– the set V = ∩{Vn ∩ Z : n ∈ N} is not dense in Z.

Obviously, V ⊂ Z. There exists an open subset W of X such that W ∩
Z 6= ∅ and W ∩ V = ∅. Then there exists a sequence {Wn : n ∈ N} of open
subsets of the space X and a spectral sequence α = {αn : n ∈ N} such that
clX Wn+1 ⊂ Wn ∩ W ∩ Uαn+1

∩ Vn and the set Hn = (Wn ∩ Z) \ clX Wn+1 is
non-empty for each n ∈ N. Since ∩{Wn : n ∈ N} is the empty set, the family
{Hn : n ∈ N} is locally finite in X and the set Hn ∩ Z is non-empty for each
n ∈ N, a contradiction. The proof is complete. ✷

Theorem 5.2. If Z is a Baire subspace of a space X, then for any dense
sieve (γ, π) of Z in X the set limX(γ, π) is dense in Z.

P r o o f. Let γ = {γn = {Uα : α ∈ An} : n ∈ N} and π = {πn : An+1 →
An : n ∈ ω} be a dense sieve of Z in X. We consider that the sets An are
well-ordered and for all n ∈ N and α, β ∈ An+1 from α ≤ β it follows that
πn(α) ≤ πn(β). For each n ∈ N and each α ∈ An+1 we put Vα = (Uα ∩ Z) \
clZ{Uβ ∩Z : β ∈ An, β < α} and Vn = ∪{Vα : α ∈ An}. The sets Vn are open and
dense in Z. Hence V = ∩{Vn∩Z : n ∈ N} is a dense subset of Z. By construction,
V ⊂ limX(γ, π). The proof is complete. ✷
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