Sunaga, T.: Theory of Interval Algebra and its Applications to Numerical Analysis. RAAG Memoirs, 2, 1958, pp. 29-46.
Moore, R. E.: Interval Analysis. Prentice Hall, Englewood Cliffs, N. J., 1966.
Ortolf, H. -J.: Eine Verallgemeinerung der Intervallarithmetik. Geselschaft fuer Mathematik und Datenverarbeitung, Bonn 11, 1969, pp. 1-71.
Kaucher, E.: Ueber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume. Dissertation, Universitaet Karlsruhe, 1973.
Kaucher, E.: Algebraische Erweiterungen der Intervallrechnung unter Erhaltung der Ordnungs und Verbandstrukturen Computing, Suppl. 1, 1977, pp. 65-79.
Kaucher, E.: Ueber Eigenschaften und en der Anwendungsmoeglichkeiten der erweiterten Intervallrechnung und des hyperbolischen Fastkoerpers ueber R Computing, Suppl. 1, 1977, pp. 81-94.
Kaucher, E.: Interval Analysis in the Extended Interval Space IR Computing, Suppl. 2, 1980, pp. 33-49.
Gardenes, E.; Trepat, A.: Fundamentals of SIGLA, an Interval Computing System over the Completed Set of Intervals. Computing, 24, 1980, pp. 161-179.
Gardenes, E.; Trepat, A.; Janer, J. M.: SIGLA-PL/1 Development and Applications.In: Nickel, K.: Interval Mathematics 1980, Academic Press, 1980, pp. 301-315.
Gardenes, E.; Trepat, A.; Janer, J. M.: Approaches to Simulation and to the Linear Problem in the SIGLA System. Freiburger Interval-Berichte 81/8, 1981, pp. 1-28.
Gardenes, E.; Trepat, A.; Mieglo H.: Present Perspective of the SIGLA Interval System. Freiburger Interval-Berichte 82/9, 1982, pp. 1-65.
Gardenes, E.; Mielgo, H.; Trepat, A.: Modal intervals: Reason and Ground Semantics, In: K. Nickel (ed.): Interval Mathematics 1985, Lecture Notes in Computer Science, Vol. 212, Springer-Verlag, Berlin, Heidelberg, 1986, pp. 27-35.
SIGLA/X group: Modal Intervals. Basic Tutorial, Proceedings of the MISC'99 Workshop, Girona, 1999, pp. 157-227.
E. Gardenes, M.A. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, A. Trepat: Modal Intervals, Reliable Computing 7, 2001, pp. 77-111.
All the relevant results on Modal Interval Analysis are collected in a book Modal Interval Analysis. New Tools for Numerical Information.
Markov, S. M.: Extended Interval Arithmetic Involving Infinite Intervals. Mathematica Balkanica, New Series, 6, 3, 1992, pp. 269-304.
Markov, S. M.: On Directed Interval Arithmetic and its Applications.
J. UCS, 1, 7, 1995, pp. 510-521.
DOI: 10.3217/jucs-001-07-0514
Markov, S. M.: On the Foundations of Interval Arithmetic. In: Alefeld, G.; Frommer, A.; Lang, B. (Eds.): Scientific Computing and Validated Numerics Akademie Verlag, Berlin, pp. 507-513.
Warmus, M.: Calculus of Approximations. Bull. Acad. Pol. Sci., Cl. III, 4(5): 253-259, 1956.
Warmus, M.: Approximations and Inequalities in the Calculus of Approximations: Classification of Approimate Numbers. Bull. Acad. Pol. Sci., Cl. III, 9(4): 241-245, 1961.
Other theoretical results concern:
- some relations and transition formulae between the arithmetic on the set of proper and improper intervals (Kaucher/modal) and the arithmetic on the set of proper intervals extended by Markov's (inner) operations. The complete transition formulae and relations are contained inPopova, E.D., Generalized Interval Arithmetic - Properties and Implementation, PhD thesis, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, 2000. (in Bulgarian)
Dimitrova, N.; Markov, S. M.; Popova, E.: Extended Interval Arithmetics: New Results and Applications. In Atanassova, L.; Herzberger, J. (Eds.): Computer Arithmetic and Enclosure Methods. Elsevier Sci. Publishers B. V., 1992, pp. 225-232. (Full Text - PDF 132K)
Popova, E. D.: Multiplication Distributivity of Proper and Improper Intervals. Reliable Computing 7, 2, 2001, pp.129-140. (DOI: 10.1023/A:1011470131086, Full Text - 194K PDF)
Popova, E. D.: All about generalized interval distributive relations. I. Complete proof of the relations, manuscript, Sofia, 2000. English translation of Chapter 2 in Popova, E.D., Generalized Interval Arithmetic - Properties and Implementation, PhD thesis, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, 2000.
E. Popova: On the Efficiency of Interval Multiplication Algorithms. Proceedings of III-rd International Conference ``Real Numbers and Computers'', Paris, April 27-29, 1998, 117-132. (Full Text - 180K PDF)
Popova, E.: Explicit Description of AE Solution Sets for Parametric Linear Systems, SIAM Journal on Matrix Analysis and Applications, 2012, 33(4), 1172-1189. DOI: 10.1137/120870359 (Reprint)
Popova, E.: Solvability of Parametric Interval Linear Systems of Equations and Inequalities, SIAM Journal on Matrix Analysis and Applications 36 (2015) 615-633. DOI: 10.1137/140966459
Popova, E., Krämer, W.: Characterization of AE Solution Sets to a Class of Parametric Linear Systems, Comptes rendus de l'Academie bulgare des Sciences 64(3):325-332, 2011.
Popova, E., M. Hladik: Outer enclosures to the parametric AE solution set, Soft Computing (2013) 17:1403-1414. DOI: 10.1007/s00500-013-1011-0 (Preprint)
Popova, E.: Inner Estimation of the Parametric Tolerable Solution Set, Computers and Mathematics with Applications, 2013, 66(9):1655-1665. DOI: 10.1016/j.camwa.2013.04.007 free access
Popova, E.: Inner Estimation of Linear Parametric AE-Solution Sets, Comptes rendus de l'Academie Bulgare des Sciences 67(1) 13-20, 2014.
Popova, E.: Improved Enclosure for Some Parametric Solution Sets with Linear Shape, Computers and Mathematics with Applications, 68 (2014) 994-1005. free access
Popova, E.: On the Unbounded Parametric Tolerable Solution Set, Numerical Algorithms 69(1) (2015), 169-182. DOI: 10.1007/s11075-014-9888-y (Preprint)
Popova, E.: Outer bounds for the parametric controllable solution set with linear shape, in M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 138-147, 2016. DOI: 10.1007/978-3-319-31769-4_12 (Preprint)
Popova, E.: Parameterized Outer Estimation of AE-Solution Sets to Parametric Interval Linear Systems, Applied Mathematics and Computation 311 (2017) 353-360. 10.1016/j.amc.2017.05.042
Knueppel, O.: BIAS - Basic Interval Arithmetic Subroutines. Bericht 93.3, Technische Universitaet Hamburg-Harburg, Hamburg, 1993.
Popova, E. D.; Ullrich, C. P.: Generalising BIAS Specification. Journal of Universal Computer Science, Vol. 3, no. 1, 1997, pp. 23-41.
Popova, E.: Interval Operations Involving NaNs. Reliable Computing, 2 (2), 1996, pp. 161-165. (PDF)
Popova, E.: Extended Interval Arithmetic in IEEE Floating-Point Environment. Interval Computations, No. 4, 1994, pp. 100-129.
Popova, E; Ullrich, C.: Directed Interval Arithmetic in Mathematica: Implementation and Applications. Technical Report 96-3, Universitaet Basel, January 1996. (PDF)
Y. Akyildiz, E. Popova, Ch. Ullrich: Computer Algebra Support for the Completed Set of Intervals. MISC'99: Workshop on Applications of Interval Analysis to Systems and Control, Girona, Spain, 1999, pp. 19-28. ISBN: 84-95138-60-3 (Full Text - PDF)
Popova, E.: Improved solution to the generalized Galilei's problem with interval loads, Archive of Applied Mechanics 87 (2017) (1):115-127. DOI: 10.1007/s00419-016-1180-2. (Preprint)
Popova, E.D.: Equilibrium equations in interval models of structures. Int. J. Reliability and Safety, 12, 1/2, 2018, 218-235. 10.1504/IJRS.2018.10013814
Popova, E.D.: Algebraic solution to interval equilibrium equations of truss structures. Applied Mathematical Modelling 65 (2019) 489-506. 10.1016/j.apm.2018.08.021
Popova, E.D., Elishakoff, I.: Novel interval model applied to derived variables in static and structural problems. Archive of Applied Mechanics (2020) 90(4):869-881. DOI: 10.1007/s00419-019-01644-8 Read-only at https://rdcu.be/b25i5. (Preprint)
Popova, E. D.; Ullrich, C.: Simplification of Symbolic-Numerical Interval Expressions In O. Gloor (Ed.): Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, ACM Press, 1998, pp. 207-214. free access
Markov, S. M.; Popova, E. D.; Ullrich, C.: On the Solution of Linear Algebraic Equations Involving Interval Coefficients. In S. Margenov, P. Vassilevski (Eds.): Iterative Methods in Linear Algebra, II, IMACS Series in Computational and Applied Mathematics, 3 1996, pp. 216-225. (Full Text)
Popova, E. D.: Algebraic Solutions to a Class of Interval Equations Journal of Universal Computer Science, Vol. 4, no. 1, 1998, pp. 48-67. free access
Popova, E. and W. Krämer: Inner and Outer Bounds for Parametric Linear Systems. J. Computational and Applied Mathematics 199(2), 2007, 310-316. DOI: 10.1016/j.cam.2005.08.048 free access
Popova, E. D.: On the Solution of Parametrised Linear Systems. In: W. Kraemer, J. Wolff von Gudenberg (Eds.): Scientific Computing, Validated Numerics, Interval Methods. Kluwer Acad. Publishers, 2001, pp. 127-138. (Full Text - PDF 200K)
Popova, E.: Solving Linear Systems whose Input Data are Rational Functions of Interval Parameters. In: T. Boyanov et al. (Eds.) Numerical Methods and Applications, LNCS 4310, 2007, Springer Berlin/Heidelberg, 345-352. Expanded version in: Preprint No. 3/2005, Institute of Mathematics and Informatics, BAS, Sofia, December 2005. (free access http://hdl.handle.net/10525/3361)
Popova, E., R. Iankov, Z. Bonev: Bounding the Response of Mechanical Structures with Uncertainties in all the Parameters . In R.L.Muhannah, R.L.Mullen (Eds): Proceedings of the NSF Workshop on Reliable Engineering Computing, Svannah, Georgia USA, Feb. 22-24, 2006, 245-265. (Full Text - PDF 352K)
F. Tonon, Using Extended Interval Algebra in Discrete Mechanics. NSF Workshop "Reliable Engineering Computing 2006: Modeling Errors and Uncertainty in Engineering Computations", Rafi L. Muhanna and Robert L. Mullen eds., February 22-24, 2006, Georgia Institute of Technology, Savannah.
See also the relevant articles of S. Shary
and of A. Goldsztejn.
Link to the
Reliable Computing (Interval Computations) website,
Any questions and/or comments are welcome. Please contact Evgenija D. Popova at
Created: September 10, 1996, Last modified: March 2024.